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A theory of anelasticity is presented, where the relaxation of all the elastic compliances, as a
function of orientation, is considered. The theory is developed for cubic and hexagonal
crystals. |t is shown that, in addition to the usual relaxations of Young’'s and shear moduli,
anelastic phenomena related to the relaxation of Poisson’s should be considered, and, an
energetic interpretation of the phase lags obtained is given. Finally, some point defect
symmetries and particular orientations are considered, as special situations of the general

formalism presented.

1. Introduction

The anelastic behaviour of materials is usually well
described by the standard anelastic solid model [1].
The anelastic properties of such a solid can be
expressed by the linear differential equation

e+ 1,6 = Jo+ Jy1,0 )

where o is the applied stress, ¢ the strain, J, and J, are
the relaxed and unrelaxed compliances, respectively,
and 7, is the relaxation time at constant stress. The dot
indicates derivative with respect to the time, ¢.

For a periodic applied stress, expressed by

6 = 0,exp (iof) (2)
and the response strain
e = (e — ig®) exp (iwr) (3)

Equation 1 yields the complex compliance

Jw) = Jw) — iJP(w) = = )
where
oJ

) _

JHw) J, + T o (5a)
and

2 = _ W
JP(w) = 5]1 e (5b)

Equations 5a and b are the so called Debye equations,
with
o = J, — J, (6)

Moreover, If the phase lag between the stress and the
strain is defined by
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8(2)(w) B J@ (a))

tan ¢(w) = (@) JVw) (M
it can be shown that
1 AW
tan (o) = % W ®)

where AW and W are the lost and stored energies per
cycle of vibration, respectively. Furthermore

an d() = g +AXM)“21 oY
where
Ay = i—uj (10)
and

Equations 5b and 9 lead to Debye peaks when plotted
as a function of wr.

The relationships described are generally used to
represent the anelastic behaviour of specimens excited
under simple situations, like longitudinally or in
torsion. In these situations, only the relaxations of
Young’s or shear moduli are measured. Furthermore,
for single crystals only the orientation dependence of
the relaxation of these two moduli are generaily
obtained [1].

The more complicated case of multiaxial stresses
have been considered, from an engineering point of
view, both by Lazan [2] and by Alfrey and Gurnee [3].
Some introductory considerations have been made by
Wert [4] to the case of multiaxial strains.

It is the purpose of this paper to extend the formal-
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ism to all the elastic compliances, as a function of
orientation, both for cubic and hexagonal symmetries.
This will allow the determination of the relaxed
and unrelaxed Poisson’s ratios, in two orthogonal
directions located in the plane perpendicular to the
direction of the applied stress. With this information,
it is possible to study the relaxation behaviour in
directions perpendicular to those corresponding to the
excitation, and, an energetic interpretation will be
given to the phase lag obtained. Finally, some point
defect symmetries and particular orientations will be
considered, as special situations of the general formal-
ism presented in the paper.

2. Theory
Generalized Hooke’s law can be expressed, in terms of
the commonly used single index notation, as [5]
6
o, = ). CyE Lhji=1,...,6 (12
j=1
where c;; are the elastic stiffness constants. In terms of
the elastic compliances
6
& = Y 5,0 (13)
j=1
The number of different elastic stiffness or elastic
compliances stays between a maximum of 21 and a
minimum of 2 for isotropic solids. Further simplifica-
tions of Hooke’s law for crystals can be made if,
instead of the usual components of stress and strain,
six independent linear combinations of these are
chosen, which poses certain fundamental symmetry
properties associated with the crystal in question. These
linear combinations, which are known as the sym-
metry coordinates of stress and strain, or as symme-
trized stresses and strains, are obtained by means of
group theory [6]. The symmetrized coordinates are
listed, for cubic and hexagonal crystals, in Tables I
and II, respectively, and they are classified as Type I
and Type II.

The special feature of strains of Type I is that a
crystal subjected to such a strain is not lowered in
symmetry by the deformation. On the other hand,
a crystal under a Type II strain is lowered in sym-
metry. Furthermore, whenever a symmetrized stress is
decoupled from all the symmetrized strains, except the
one which corresponds to it, Hooke’s law reverts to
the simple form

& =

Sa, (14)

where y denotes the symmetry designation and S, is
the appropriate symmetrized compliance. In the hex-
agonal Type 1 symmetrized coordinates, however,
complete decoupling does not occur and the situation is
more complex. For lower symmetry erystals decoupling
occurs less frequently until finally, for the triclinic
case, all six stresses and strain components are of
Type I and a set of completely coupled equations is
obtained. The reason is that triclinic crystals show no
symmetry and there is no simplification of Hooke’s
law as a consequence of symmetry considerations.
In order to generalize the equations of elasticity
of crystals to allow for time-dependent effects, the
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TABLE I
Type 1

Symmetrical stresses, strains and compliances of

Crystal system Stress Compliance Strain

Cubic o, + 0+ 035, + 25,08 + & + g

Hexagonal

o, + 0, IRz
— =S t s
NN
2513
P -

gy Sy &

validity of the standard anelastic solid model will be
accepted, for each symmetrized coordinate decoupled
one from another. In this case

& + 1,8, = S,0, + 1,8,0,

(15)
where r and u denote relaxed and unrelaxed complian-
ces, respectively. Furthermore, in the theory of point
defects relaxation, when defects of only a single specie
are present, only compliances of Type II may under-
go relaxation [1]. Such a situation will be assumed in

the theoretical development that will follow.

2.1. Cubic symmetry. Longitudinal stress
For a cubic crystal under a uniaxial stress applied
along X7, Fig. 1, in the two index notation

g

(16)

where {a"} is the inverse matrix of the orthogonal
transformation X; —» X/. Moreover, from Tables I
and II

ot
g — Gydy Oy

&+ &+ & = (S + 25u)o + 0, + 03)
2ep — & — & = (S — S;,)Q20, — 0, — 03)
& — & = (S — Splo, — o3)
(17)
34 = S440'4
85 = S4465
86 - S440-6

and, on combining Equations 16 and 17 leads to

g+ &+ & = (Su+ 25, + 4 + ai)o]
2 — & —& = (S, — S,z)(Zaﬁz - a2+|2 - a;z)o_;
& — & = (Sy — Sp)a’ — aii’)o (18)

& = Syajalio)

& = Suaiafo)

& = Sua5aio

TABLE Il Symmetrical stresses, strains and compliances of
Type II

Crystal system Stress Compliance Strain
Cubic 26, — 0y — 63— S — S;3 > 26 — & — &
0, — 03 = S S & — &
Oy - Sy &
0Os i Sas &s
O¢ - Sag 6
Hexagonal g, — Su &4
Os - Sas &s
gy — 0y Sy T Sy & — &
Og = Sy T Sp €/2




Figure | Cubic cell and Euler’s angles.

The time dependent generalization of these equations
is given by

(& + & + &) +1 (€ + & + &)

08y, +2812)

= (S + 2Sp)a; + [(Su + 25p)

e
B 5(511+2512)]T0(5H+2512)G'

(2e; — & — &) + Togs, -1 (2¢) — & — &)

= Qa)? — a3’ — a;Z){(Sll — Siloy
+ [(Sy — S12) — b¢s-s19]
P (19)
(8, — &) + To(gll_slz)(éz — &)
(a3 — a312){(S“ S}
+ (i — i) — sy -s0)]
TU(S[]’SIZJGI}
& + TaSMé4 a3,03 (84,07 + (S — 05, )T5,,01]
& + Ta344é5 = a3a};[Suo; + (Su — 5544)70544‘5;]
8¢ + Tas44é6 = a)a[Suo] + (Su — 9s,)7,,01]

where the subindex denotes the respective symmetrized
coordinates for 7, and 4.

For a time dependent sinusoidal stress and an
analog response for the strain, that is,

g, = oy exp (iwt)

& =

;o= (6" — gP)exp (ior)  j=1,...6 (20)

and taking into account that ¢, + &, + & isa Type ]
strain so that L2 = 0 and &, 12, = 0, after a
long algebraic and analytlcal treatment it can be

shown that
{(Sll - SIZ)(3al+]2 - 1) + (S1| + 2312)
+ s — 512) — 5(311—51»](30;2 -1
+ (s + 25‘12)} T,

Fsy —512)

a i(i)f Is ) —913) (‘11 512) (3(1 - l)} 0—;/
B + o’ ] 1)
Sag (S44 o 5544)6027:0%44 - iwromésw

& =

o
as ;03

0+ ')

Analogous expressions can be obtained for the other
strains. Of interest for this paper are the strains ¢
which in the two index notation can be expressed as

8]{]( = ajlakm'g[m (22)
Then, on combining Equations 21 and 22 leads to
ep = [{lsn + 2512) + 2(s;;, — sp) (1 — 30G))

+ w't {(s10 + 2s12)

Tioty =s12)
2[(s1) — $12) = O, (1 — 310,))
— Do, 6 (= 30D}

B + o’ Ta(m | ))] + Tyfse + (540 — 5544)60%5‘44
— iwd,, 1, (1 + wzri‘w‘)]a{ (23)

g = [{(, + 2s,2) — (5 — s2)( = 30

A (CT
= (s = $12) = Oy, sy} (1 — 3Tn)}
O (1 = 310) Y/

B+ o', | 0 = Tolsu + Gu — 6,0,

+ o't

+ iwt

Tsp1 =512

— ior,, 8,20 + o' o,
where

I, = 0%10%2 + a%la%3 + 0%20%3 (24)
and

Iy = ahay + aha, + ahas (25)

are orientation factors for the cubic symmetry. g, are
the components of the matrix {a} of the orthogonal
transformation X; - X/. Equation 23 can also be
written as

¢ = (517 + 2515) + 205y — sy), (1 — 3IYy)
‘ 3
+ s + %(1 - 31—‘11)5@“73‘12) 1—‘115544
o (1 + a)z i(xl xlz)) 1 + 0)212
_ a - 31—11)53” 1P oy rnwfamém]
1 + w’c? 1 + o't
(Su =) 544
& = (s + 2812) — (511 — s12), (1 — 3I,)
? 3
_ EES ¥ = 300,) 0, —sp0) _ I, 344/2
2 (1 + o’c? ) 1 + o’
s —=s12) Sa4
i il:a)ro(sllm)( - 3r12)5(s]|—312) rlZqu‘M&&M :|
- 2.2
31 + o’ 1:,,0“ " ) 2l + w T”w)
(26)

The expressions given by Equation 26 are formally
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Y _
tan (ﬂz 2’1)

o~

ln{wtg)

Figure 2 Complex Poisson’s ratio and tan (¢, — ¢,) against
In wt,. Some characteristic values, indicated from 1 to 6 are given
in Table II.

similar to the equations of the five parameters model

containing two Voigt units [1]. The subscript u has the

same meaning as for Equation 1, that is, the unrelaxed

values. The compliances without subscript, as in the

previous equations, will indicate relaxed compliances.
ST

Furthermore,
5J@
1 + o?r? + 1 + wzrf,m]

J(w) = |:Ju +
(1) (2)
. 0 T, @ C()Ta
— l|:5-] —————1 n 0)21'5,1)2 + oJ —1 n CL)Z‘L'S,Z)Z

In addition, if T}, = T}, = 0 then

curve. In addition, since for
o2t 0 S1
— = 0= wr =
2 _
6(60‘[0) Tou ) \/3 (Sll - %6(S|1~-:lz))

(34)

the modulus curve shows an inflection point at wr, =
1 /\/3_ , slightly displaced with respect to the classical
value for Young’s and shear moduli, as shown in
Fig. 2.

From another point of view, according to the
theories of elasticity and for cubic symmetry [7]

Vo= S, st (511 — Sz — 3sa) T
n = =
it s — 208y — s — dsa)y
(35)

and on using the same procedure as in the case of
errors theory for dvj, < v;, it can be shown that

oV, _
Vi
1
. [3(5(311+2512) - 6(511*512)) + (5(51|"S12) - 5S44/2)r12
S+ (s — 8, — 544/2)r12

- %(5(511+2312) + 25(511*312)) - (25(511—512) - 5(544))F11:|
sy 208y — 5, — Saa) Ty

(36)

2 2.2 _ 2
, s+ [si — 35(51|ﬂ‘12)]w TU(:“—;,2> lwr”(m-slz) 36(511*512)
“= 1 + o't
Otsy1 =512) (28)
1 2.2 . 1
, s+ [s12 + 36, —sp]@ Togy—s T 1 Q%o s 3065, —s12)
o = 1 + o’t
T(syy —912)
and Poisson’s ratio is given by
v, = W= 0P = g e (29)
with
0 26
Gy —s12) (11 —s12) 2.2
— 88 + (512 + 3 ><511 - T3 )CU [
= (30)
v =
7 2 777
s+ (S” - 35(3‘11*312)) @ T%“—slz)
and If I, =0, =0 and &, 5, = 0, Equation 36

v = wt"c‘nvslz) 5(3‘11*)'12) (Sll + 2S12) (31)

2 2 2. 2.2
s+ G — 35(3'11*12)) B Ty =i

Moreover, it is easy to see that if

s
T, -0 W 2 2= (32a)
sy =912 Ky
11
Siz + Oy, 503
Ty o >0 W — ————Z(S” s @ =0
L S~ 35(511*512)
(32b)

The relaxation curves described by Equations 30 and
31 are similar to those of Young’s and shear moduli,
in isotropic materials. In fact

v Sh

= 0= o, =
S|

dwr,) (33)

2
sn— %06, )

and v? has a maximum at wt, ~ 1, as for a Debye
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reduces to

ov, = (37)

_ 5(511*512) (1 + 2 Sﬁ)

35y St
Moreover, if 4, _,,) < (s;; — 1), Equation (32b)
leads to

s Os, -
s - taoa(y

Spa
+ 2 —) 38
S 351 38

S

and

oV, = (39

o 5(S11—512) (1 + ﬁ>
38y S
which coincides with Equation 37.

2.2. Cubic symmetry. Shear stress
If a shear stress o3, is applied to a cubic cell, a
procedure similar to the one used for the previous case



leads to

2 2 .
, (511 — s12) + [ — s12) — 5(su—s12)] W10, 5, — lé(s”—slz)w'f%n,w
&y = 205 a+ e

511 =512)

S4s + (Sgu —
+ 3(1 — 2I'y)

22 .
d,,) @ T, — 10T, 0844

2.2
1+ w rgm)

For a specimen with cylindrical symmetry, an integra-
tion over i between 0 and 2z should be performed [8].
Then, if 63, = 20}

(40)

/
} 023

o = {41_ (11 — S12) + [(51p — s12) — 5(5117512)] a)z‘wf“_m - iw'fix“\mé(s“-slz)
4 33 2.2
I+ow T%n'flz))
Su + (S — 0,,) @1, — io1, O,
+ (1 — 2Iy) 01 o7) = }a; (41)
Tsgq
In the particular case where wt, — 0 & = [af’sy + (@ + a&f)spl oy (47b)
g = [40s — sl + (1 — 2I53) 50 04 (42) (5, — &) + ‘ca(:”_m)(é, — &)
and if wt, - © ( (@ 2 o1
= i — Spjldiy — dy37) 03
& = {4[(511 — §p) — 5(5‘1—512)]F33
2 2 g
+ (1 = 2T) sa — 3,,)) 04 @z T se) = O ] e, (@ @) 6
T (47¢)
Moreover, shear modulus is given by
) 8:; 44 &4 + 165446:4 = a2+3a;~35440-; + (S44 - 5544) 16344a2+3a;—30.—§
G = —
o, “4) 47d)
and . , 5 N
Jo oo o= &+ T, 85 = A3A3S,03 + (a2 — 95,,) %o, d1303303
- oty o o, -0 (476)
= 4504, _y,y + (1 — 2I) 0, (45) .

% 4 q S~ (s — $y) aja3;05
which is the expression commonly reported in the 2 Tena2) ! 127 TR
literature [1]. _

+ [(s1 — sp2) — 5(51,73'12)] To, ,4;30;30'3 (471)

2.3. Hexagonal symmetry. Longitudinal stress
The treatment of hexagonal crystals under longi-
tudinal sinusoidal stresses can be carried on in a
similar way, starting from Tables I and 11. The elastic
relations are

—\%(al + &) = /28305 + (s + Slz)@%‘fﬁ
& = Sp303 + s;3(0, + 0,)
g — & = (s, — sp)(o, — 0,) 46)
& = 5404
& = S4u0s
g = 2(8;; — $2)0

If the stress is applied along X3 (see Fig. 3) the anelas-
tic relationships associated with Equation 46 are given
by
1
J2

J2

(&, + &)

(472)

S11 512

There are no derivative terms in Equation 47a and 47b
due to the fact that only Type I strains are involved.
Furthermore, on taking into account these equations
and after an arduous but simple treatment it can be

Figure 3 Hexagonal cell and Euler’s angles.
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shown that

) ) ) 2 P P
{(031511 + ans;, + ans;) + l:(a.zlsn + aps;y + as;3)

& =
2 2 iw(a, — a) o T
2 / ha . .
(031 — 032) 5 1172 /(1 4 a)zfz ) _ 31 32 (11 s42) 05—y o
- 2 =) [ @ T ) / %1y 12 21 + o'tl ) :
112
2 2
2 b 2 2 2 2 (@3 + ap)
& = H(a.HSm + aynsy + ags;s) + [(43\512 + aypsy + aps;) + 5 Osy, —s12)
, L2 2 s
> s / , iw(ay — as) O(S,lﬂlz)fau“ﬂ.lz)
X w1 [+ 't — o}
(511 —*12) (¥ —913)
- 13 21 + w T‘Tﬂu*nz) (48)
2 1 2 ’
& = lapsy + (1 — ag)s;] o3
. 5 .
S+ (S — 9y,) @ To,, la)rom(‘is44 )
& = Q330503
‘ 1 + o't
44
2 .
Saq (s — 5s44) Wt T ZCUTJ_,M(SAYM ,
& = ) 330303
I + w'r,
.\44
1.2 :
(51— S) + (51— S — Oy —e) @ T —ons lea(_yHﬂmé(s”ﬂ,Z) .
& = 1 + o't 2a5,05,07
sy —s12)
1 2
On combining these equations with Equation 22leads  and ¢ = 6 = 0, then
to ,
83 = S330':; (52)
’ _ _ 2.2 _ .
g = {[s, + (5, — ds)w Toty) —er lwtd(511’~"12)5sl]/ and
& = 303 (53)
(1 + a2, ) - dd
Moreover
2.2 .
Sap + (S — O, )01,  — iwt, 6, e
44 544 Saq 44 ’ E71 _ B _ v 54
x 1 72 g3 = = = 55(0) (54)
(1 + o'z ) a3

(49)

& = {[Sm + (S — 55111)(1’272

Ts11 —312)

] 2.2
- ICUTomlfslz)éSm]/(l To 10(511—512))

+ ax(1 — ab)

Saq + (Sas — 5544)0021}2::44 - ia)r,wéw ,
X ) 0-3
0 +o,)
where
S1 = ahass, + (anayn — a5a3)'s
1 13453571 1143 12031 ) 512
+ [ah(1 — a33) + a@s(1 — aiy)] 15 + ahdissy
o(sy — $pp)
o5, = a%3a§3 - (anas, — 012031)2—“T—

2
— @)s1; + Ay
o(s); — 515)

2

In the particular case where {a} is the orthogonal
matrix of Euler’s angles, that is,

smo= (1 — a3)sy, + 2a5(1

osyr = (1 — a§3)2 (50)

cos ¥ cos ¢ — cos B sin ¥ sin ¢
—sin ¥ cos ¢ — cos 0 cos ¥ sin ¢

{a} =

sin @ sin ¢

98

cos ¥ sin ¢ + cos 6 cos ¥ sin ¥

—sin y sin ¢ + cos 0 cos Y cos ¥ cos y sin 8

which is the anelastic generalization of the known
equation of elasticity [5]. Since

s = sin*0 s, + sin’6 cos’® (25,3 + su)

+ cos*0 533 (55)

on taking into account Equations 52 and 53 leads to

E7!' = g5 (56)
and
& s
1 . (2 1 13
vy = W -0 = -2 = == (57)
& 533

which are invariant under a change of wt,. These
results will be considered in a forthcoming paper,
where the concepts developed will be applied to actual
experimental data.

2.4. Hexagonal symmetry. Shear stress

It will be assumed that o3 is the shear stress applied on
a cylindrical specimen. Then, as in the previous sec-
tion, an integration over ¥ is necessary to average
correctly. Furthermore, as in the previous paragraph,
it will be assumed that only single defects are present.

sin i sin 0
(51)

—sin 8 cos ¢ cos 6



Under these conditions

2,
-1 _ JO Sde _ / S/ 1 2 25
G = "__“2 = {Slv + Sy — (1 — a33) (sllfslz)]
T
2,2 : 2 \2
xw 10(511—512) o le”(Slrflz) (1 - 6133) }/

(I + w? )

Ty —512)

— a§3 )41%3

L (I + a3) — 21
2

X [S4 + (S0 — 5:44) wzrtzrm - iCUTaSM 0,1/

(1 + wz-fim) (58)
where
sv = (1 — a3) [(sy — s12)
+ 2a3; (s — 283 + s33)] (39)
which is only a function of 6.
2.5. Anelastic lost energy
The elastic energy is given by
W = Jcuejen (60)
so that
dW = cyy ey dey (61)

and when the strain is a maximum, the total elastic
energy accumulated in a quarter of a cycle is

w

T
W = Z .{O Cijkl 81] Sk[ dt (62)
The energy dissipated per cycle is given by
T
AW = [ ey ey dey (63)
Moreover, under a uniaxial stress
g = (s8 — iS}) aq exp (iwt)
i i g/ vol (6 4)
g, = o sk + is8) o exp (iwt)

where R and | denote the real and imaginary com-
ponent, respectively. In terms of the stress tensor

W rnjw T
W = ZJO oyt dt = Gk1'4_0—01 son (65)

and

AW = ﬁ“ Oy by dt = (66)

[
O T Gop Spm

When Equations 65 and 66 are full developed, the

and
1 1 i
AW = oy7 [0S + 02501 + 03510

1 1 I
+ 2(01381n + O3S T 0235311

(68)

Each term of these equations describes the lost and
stored energy raised by a particular strain mode. In
a two index notation, which does not mean tensorial
character, Equations 67 and 68 can be written as

W = W, + W,+ Wa+ W+ W + W
(69)
AW = AW, + AW, + AW, + AW,
+ AW, + AW (70
Furthermore, the following quotients give the

expressions for the internal friction due to each strain
mode

AW, sh AW, sh

tan = = — tan = = =
b aw, s ¢ 4w, 5
AW, Si3 AWy, Sl

tan g, = —— = = tan¢, = = =
’ 4w, 5?3 ¢ 4wy, SE&
AW Sis AW She

tan = = — tan = == 0
¢s 4ws 5]1{5 s AW S‘I{G
(71)

where the ¢, are the phase angles between the longi-
tudinal stress and the corresponding strain. For
example, ¢, is the angle defined by Equation 8, in the
more restricted unidimensional problem.

Finally, the results given by Equation 28 will be
considered, as an example. In fact

— ot 2 5(511 ~—s12)
¢ sy —m12) 3
tan 1 =
) 2.2
S+ (Sll 35(511*512)) @ T"(Snﬂu)
(72)
5(511*5|2)
Ty —512) 3
tan ¢,
0
(511 —512) 2.2
Sy + (512 + 3 >w Loty =512

and Equation 28 can be written in the alternative form

il

& leoi| exp (—i¢,) exp (iwt)
lega| €xp (—i¢,) exp (iwt)

The corresponding modulus and phase diagram is
shown in Fig. 4. It can be seen very easily that

(73)

&

(511 —512)
wT e
Ty —912) 3

(s + 2512)
(74)

tan (¢, — @) = o =

following expressions are obtained

Oy R R R

W = 3 o st + 0nsnn + 0usay
R R R

+ 2(0138Hn + GuSt T 0235311)]

(67)

B 26
(511 —512) 2.2
S8 + (Sn T T3 Sip -+ 5(5117312) B oo
3

is the phase lag between longitudinal and transversal
strains. On using the same arguments as for Equations
30 and 31, the derivative

K (V(Z)/v(l))

dwr, =0
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3 9% 5%
| 2,2
3%/ 511*‘511‘,2/ §a10g
2] / X
SS9 W5 N N2 9
N
-0z.24 /
vy 2; %,

Figure 4 Phase diagram of longitudinal and transversal strains for
the cubic symmetry. X| coincident with X .

leads to
Wt S11812 ~
’ §i— 25(51[—312) S0y + 5(511—512)
11 3 12 3
75
and, if (73)
v2
wt, - 0 ol 0
o (76)
wT, = 00 50
v

This behaviour is shown qualitatively in Fig. 2 and
some characteristic values, indicated from 1 to 6, are
given in Table III.

3. Discussion and conclusions

The most interesting aspects of the theory developed
are those concerning the energetic interpretations
given in paragraph 2.5. In fact, experimental values
are usually found in the literature, where the lost
energy is appreciable in longitudinal vibrations, while
the modulus does not show the expected variation.
This behaviour can be attributed to the loss produced
by other strains, than the one in the direction of
the applied stress, which are not measured in these
experiments.

Due to the higher elastic anisotropy of Poisson’s
ratio in single crystals [9, 10], than both Young’s
and shear modulus, a similar behaviour should be
expected for time-dependent events. This anisotropy is
reflected in several equations presented in the paper,
and the coupling between the two perpendicular
strains on the anelastic behaviour of Poisson’s ratio is
evident. Therefore, a more substantial information
can be obtained from measurements of Poisson’s ratio
than from those of Young’s or shear moduli.

The proposed model might give also an explanation
of the wide scatter in experimental values of Poisson’s
ratio. In fact, even if Young’s or shear modulus do not
show appreciable relaxation, Poisson’s ratio can be
affected by frequency or temperature due to anelastic
effects.

A set of equations were given to calculate relaxation
and lost energies as functions of direction. These can
be used to interprete data in single crystals. Pole dia-
grams and appropriate distribution functions should
be used for polycrystals, for a correct average.
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TABLE II1 Characteristic values for the points indicated from
[ to 6 in Fig. 2

Position ~ Value
Sy
1 20, _s
J3 (s” _ <‘I; 12))
Sy
2 25“:1 —$12)
Su — .
S11812 "
3 255 -5 5" =5
(s“ _ (1; 12)><512+ (-113 1z>>
5Y -3
5, + (~1x3 12)
4 _
25(511*f12)
S~ —3

S 2 sy + 25y
5 2045, —s1) Oteyy —s17) 2syy + Si2)
Su— T3 % + —

ey -5 (11 + 2512)

6 6 25(511*&2)
S i S — a3

Finally, the concepts developed will be applied to
actual experimental data in forthcoming papers.
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