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A theory of anelasticity is presented, where the relaxation of all the elastic compliances, as a 
function of orientation, is considered. The theory is developed for cubic and hexagonal 
crystals. It is shown that, in addition to the usual relaxations of Young's and shear moduli, 
anelastic phenomena related to the relaxation of Poisson's should be considered, and, an 
energetic interpretation of the phase lags obtained is given. Finally, some point defect 
symmetries and particular orientations are considered, as special situations of the general 
formalism presented. 

1. I n t r o d u c t i o n  
The anelastic behaviour of materials is usually well 
described by the standard anelastic solid model [1]. 
The anelastic properties of such a solid can be 
expressed by the linear differential equation 

g + "c,~ = Jr a + J,.,'coa (1)  

where a is the applied stress, 8 the strain, Jr and Ju are 
the relaxed and unrelaxed compliances, respectively, 
and G is the relaxation time at constant stress. The dot 
indicates derivative with respect to the time, t. 

For a periodic applied stress, expressed by 

cr = ao exp (Rot) (2) 

and the response strain 

= (e(13 _ ie/2)) exp (Rot) (3) 

Equation 1 yields the complex compliance 

J ( c o )  = J0 ) ( co )  - -  iJ(2)((o) = - (4) 
o" 

where 

~J 
J(l)((o) = Ju + 1 + co2v 2 (5a) 

and 

J(2)((O) = 65J co'co 
2 2 (Sb) 1 + 0 %  

Equations 5a and b are the so called Debye equations, 
with 

6J  = Jr - J~ (6) 

Moreover, If the phase lag between the stress and the 
strain is defined by 

0 0 2 2 - 2 4 6 1 / 8 7  $03.00 + .12 © 1987 Chapman and Hall Ltd. 

tan qS(co) 
E(2)(CO) J(2) ( o )  

~(1>(co) J~1>(co) 

it can be shown that 

(7) 

1 AW 
tan qS(m) - 2rr W (8) 

tan (b(co) = 

where 

where A W and W are the lost and stored energies per 
cycle of vibration, respectively. Furthermore 

A M coz" 

(1 + AM) ~/2 1 + (,02'F 2 (9) 

and 

M 
A~ = -v- (lO) 

Ju 

~° ( l l )  
- (1 + AM) 1/2 

Equations 5b and 9 lead to Debye peaks when plotted 
as a function of cot. 

The relationships described are generally used to 
represent the anelastic behaviour of specimens excited 
under simple situations, like longitudinally or in 
torsion. In these situations, only the relaxations of 
Young's or shear moduli are measured. Furthermore, 
for single crystals only the orientation dependence of 
the relaxation of these two moduli are generally 
obtained [1]. 

The more complicated case of multiaxial stresses 
have been considered, from an engineering point of 
view, both by Lazan [21 and by Alfrey and Gurnee [3]. 
Some introductory considerations have been made by 
Wert [4] to the case of multiaxial strains. 

It is the purpose of this paper to extend the formal- 

93 



ism to all the elastic compliances, as a function of 
orientation, both for cubic and hexagonal symmetries. 
This will allow the determination of the relaxed 
and unrelaxed Poisson's ratios, in two orthogonal 
directions located in the plane perpendicular to the 
direction of the applied stress. With this information, 
it is possible to study the relaxation behaviour in 
directions perpendicular to those corresponding to the 
excitation, and, an energetic interpretation will be 
given to the phase lag obtained. Finally, some point 
defect symmetries and particular orientations will be 
considered, as special situations of the general formal- 
ism presented in the paper. 

2. Theory 
Generalized Hooke's law can be expressed, in terms of 
the commonly used single index notation, as [5] 

6 

0-, = ~ c~jej i , j  = 1 , . . . , 6  (12) 
j=]  

where c 0 are the elastic stiffness constants. In terms of 
the elastic compliances 

6 

/3i = ~ si;0"j (13) 
2--1 

The number of different elastic stiffness or elastic 
compliances stays between a maximum of 21 and a 
minimum of 2 for isotropic solids. Further simplifica- 
tions of Hooke's law for crystals can be made if, 
instead of the usual components of stress and strain, 
six independent linear combinations of these are 
chosen, which poses certain fundamental symmetry 
properties associated with the crystal in question. These 
linear combinations, which are known as the sym- 
metry coordinates of stress and strain, or as symme- 
trized stresses and strains, are obtained by means of 
group theory [6]. The symmetrized coordinates are 
listed, for cubic and hexagonal crystals, in Tables I 
and II, respectively, and they are classified as Type I 
and Type II. 

The special feature of strains of Type I is that a 
crystal subjected to such a strain is not lowered in 
symmetry by the deformation. On the other hand, 
a crystal under a Type II strain is lowered in sym- 
metry. Furthermore, whenever a symmetrized stress is 
decoupled from all the symmetrized strains, except the 
one which corresponds to it, Hooke's law reverts to 
the simple form 

e.: = Sv0-,: (14) 

where 7 denotes the symmetry designation and Sr is 
the appropriate symmetrized compliance. In the hex- 
agonal Type I symmetrized coordinates, however, 
complete decoupling does not occur and the situation is 
more complex. For lower symmetry crystals decoupling 
occurs less frequently until finally, for the triclinic 
case, all six stresses and strain components are of 
Type I and a set of completely coupled equations is 
obtained. The reason is that triclinic crystals show no 
symmetry and there is no simplification of Hooke's 
law as a consequence of symmetry considerations. 

In order to generalize the equations of elasticity 
of  crystals to allow for time-dependent effects, the 
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T A B L E  I S y m m e t r i c a l  s t r e s s e s ,  s t r a i n s  a n d  c o m p l i a n c e s  o f  

T y p e  I 

Crystal system Stress Compliance Strain 

Cubic 
Hexagonal 

0"[ -~ 0"2 -~- 0"3 --~ SII -[- 2S]2 "~  8[ + £:2 + 83 

0"1 ~- 0-2 E:I -~- 82 - - , /2  ~N SII -~" SI2~+ .,/2 
x / 2  s13 

0-3 ~'~ $33 --+ £:3 

validity of the standard anelastic solid model will be 
accepted, for each symmetrized coordinate decoupled 
one from another. In this case 

8~ + %./~.: = Syra.: + %.:ST j r .  ,, (15) 

where r and u denote relaxed and unrelaxed complian- 
ces, respectively. Furthermore, in the theory of point 
defects relaxation, when defects of only a single specie 
are present, only compliances of Type II may under- 
go relaxation [1]. Such a situation will be assumed in 
the theoretical development that will follow. 

2.1. Cubic symmetry. Longitudinal stress 
For a cubic crystal under a uniaxial stress applied 
along X~, Fig. 1, in the two index notation 

+ + ' (16) 0"ij = aik ajl (Tkl 

where {a +} is the inverse matrix of the orthogonal 
transformation X~ --+ X,'. Moreover, from Tables I 
and II 

g I -~- 82 -t- /33 = ( S I I  + 2 S 1 2 ) ( 0 - 1  -I- 0 2 -]- 0 -3)  

281 - 8 2  - /33 = ( S I 1  - S 1 2 ) ( 2 0 " 1  - 0"2 - 0 " 3 )  

8 2 - -  /3 3 = ( S l l  - -  S 1 2 ) ( 0 - 2  - 0"3)  

84 z $ 4 4 0 -  4 

85 ~-  $ 4 4  0- 5 

/36 ~ 8 4 4  0 6 

(17) 

and, on combining Equations 16 and 17 leads to 

/31 Jr- 82 -}- /33 ~-- ( S l l  -]- 2 S 1 2 ) ( a ~ 1 2  -t- a l l  2 -1- a + 2 ) o ~  

281 . . . . . .  a2 g3 ( S I I  Si2)(2a+2 a~12 a31+2,)O. 1, 

82 - -  83 = ( S I I  - -  S 1 2 ) ( a ~ l  2 - a~2)a'i 
(18) 

+ + : 
84 ~ S44a31a21 0-1 

+ + : 
85 -= 544a31al10-  I 

86 = S44af la~a~ 

T A B L E  I I  S y m m e t r i c a l  s t r e s s e s ,  s t r a i n s  a n d  c o m p l i a n c e s  o f  

T y p e  I I  

C r y s t a l  s y s t e m  S t r e s s  C o m p l i a n c e  S t r a i n  

C u b i c  20-1 - 0-2 - 0"3 ~ Sll - s12 --+ 2 ~  - £:2 - -  £:3 

0"2 0"3 ---+ Sll - -  s12 "-+ £:2 - £:3 

H e x a g o n a l  

0-a -+  $44 --+ ~4 

0"5 -+  $44 -+  ~5 

0"6 '-9 $44 -'+ £:6 

0-4 -+  $44 --+ £:4 

0-5 ~ $44 --+ £:5 

0"1 - -  0-2 --~ SII - -  SI2 -+  £:1 - -  £:2 

0-6 ~ SII - -  S12 ~ £:6/2 



X~ X3 - iooz%, .,,2)a(,,~_;,~)(3a1~ 2 - 1)} o; /  

0 [3(1 + co2r2o~ , )] (21) 
('11 '12) 

s44 + (s4~ - a~ . . ) co2 r444  - i~%.~s44 
! 54 = - -  ( 1 - ' ~  ( . 0 2 7 2 2 ~ r 5 4 4 ~ )  - - a ~ l l a 2 ~ l l f ~ ;  

Analogous expressions can be obtained for the other, 
i. _--- X~ strains. Of  interest for this paper are the strains ej 

. . . . .  r,, which in the two index notat ion can be expressed as 

"-" X2 ej~ = ajla~.melm (22) 

Then, on combining Equations 21 and 22 leads to 

e i = ]{(s~ + 2s12) + 2(s1~ - s12)(1 - 3F~l) 

-~- (D2"C2°-~ s ) {  (SI '  -~- 251'2) 

Figure 1 Cubic cell and Euler's angles. 

The time dependent generalization of these equations 
is given by 

(< + e2 + ~3) + r%,+:~. ~ (i~ + 4 + ~3) 

: (S I |  -[- 2S12)0" I Jr- [(SI1 Jr- 2S,2 ) 

-- I~(SII~_ 2S12)]"~G(NII+2SI2)(~'] 

(2gl 52 83) q- T~(St, s,2) - -  - -  

= (2a~l a - a +2 _ a + 2 ) { ( S l ,  - -  S12)o-'1 

q -  [ ( S I I  - -  S12 ) - 6($11_s12) ] 

x r%,_~,~,<} 
(19) 

(e2 - e3) + % < _ , , ~ ( 4  - ~3) 

= (a2~2 - a~2){(S,,  - S,2)0-'1 

"q- [ ( S I I  - -  512 ) - -  5($11_S12) ] 

~24 ~-  "[aS.  84 

~5 -}- "Qr5,44~5 

8 6 -It- ~'o.$44~6 

+ + 
a3,a2L[S~al + ( 5 4 4  - -  I~$44)~'644(~] 

a~a+[54461 q- ($44 - (~s44)~s44°'1] 

+ +[$440- I q- ($44 - ~$44)17¢44d~] a21 al  i 

where the subindex denotes the respective symmetrized 
coordinates for % and 6. 

For  a time dependent sinusoidal stress and an 
analog response for the strain, that  is, 

61 = O'ol exp (ioot) 

ej = (e} 1) -- e} 2)) exp (icot) j = 1 , . . .  6 (20) 

and taking into account that  e~ + ~2 + e3 is a Type I 
strain so that  % = 0 and 6<1 +2~,:) = 0, after a (Sll +2s12) 1 1 
long algebraic and anmyticai treatment it can be 
shown that  

C 1 = { ( a l l  - -  S12)(3ai~ 2 - -  1) + (sl, + 2S12)  

+ { [ (SI I  - -  S12 ) - -  (~(,tl_s,2)](3a +2 -- 1)  

+ (SI1 q- 2S12)} (.O2r 2 O'{Sl 1 s12) 

+ 2[(s,, - s t2  ) - a ( S l l _ S l 2 ) ] ( 1  - 3 F l l ) }  

-- i2cozO~.l ' s12)15(Sll-, ,2)( 1 -- 3Fl,)} / 

[3(1 + c02r2%,_,,2,) ] + Fl,[S44 + ($44 - -  (~s44)(D2T2o,44 

-- i60(~s44"C~44]/(1 -}- (J)2"~20-544)t0" ~ (23) 

G2 = ]{(S,l + 25,2) -- (Sll - -  S l2) (1  - -  3C12) 

OF (d)2"[25(sll_s,2, {(SI1 -1- 2s,2) 

- -  [ (Sl l  - -  S12) - -  (5(sl, ~:)l(1 - 3F12) } 

+ icoz%t_,,21a(sH-s,2)(1 --  3F12)} / 

[3(1 + (D2r  2 3] - -  FI2[$44 -1- ($44 - -  15s44)(.02T2% 
°'(Sl 1 sl2 )]l '44 

- -  i~ 'c%4~,44]/[2(1 -}- (D2"[2544)]10-/1 

where 

and 

25122 + 2 2 2 2 (24) F I I  ~ a l l  a~a~3 Jr- a12513 

: 2 2 2 2 FI2 521a21 q- a12a22 q- a13a23 (25) 

are orientation factors for the cubic symmetry, ao are 
the components  of the matrix {a} of  the orthogonal 
t ransformation X, ~ X/. Equat ion 23 can also be 
written as 

, [-(SI1 q- 2S12 ) q- 2(S,1 - -  S i2)u( l  - -  3FII  ) 

e~ = L 3 

2 __ F11 ~5s4 4 x(1 3Flt)~(Sl t  '12) + O)21:2 
+ Flls44u + (1 + c02r 2 't2~ ) 1 + 

O-(s [ 1 as44 

I 2 (  l --3Fll)(~(SII--SI2)U')'[a(,II Sl2 ) Fll(D'Cas,~s44] 
-- i 1 ~-- (d)2Z'2 a -~ 1 + O2T 2 

(Sll st2) ~r544 

, V ( S l l  + 25,2) - (S l l  - $12)u(1 - -  3 F , 2 )  
82 = L 3 

1-,2 ] 1(1 -- 3F12)6(s,~ , , 2 )  F,265./2 

J 2 2 
2 S44u -}- ( l  -1-(Z)2r2O-(s[i s12) ) 1 + CO %"44 

F09%1,,, ,,:)(1 - 3F12)6(s,,_~12) F120)'Cas"~Ss44 1 
+ i L 3 ( i - T  ~ - 2 _ - 5 ~ -  - ----_.,_---7_2 z%~ .,~:)) 2(1 + co-to,)  J 

(26) 

The expressions given by Equation 26 are formally 
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_ S1_..2 
S11 

to°%-++ 

ii 25+ i [ 7 . ~ ¢  1 

0 1 / j  ~2 in (to'~cr) 

Figure 2 Complex Poisson's ratio and tan (q52 -(~1) against 
In oJ G. Some characteristic values, indicated from 1 to 6 are given 
in Table III. 

similar to the equations of the five parameters model 
containing two Voigt units [1]. The subscript u has the 
same meaning as for Equation 1, that is, the unrelaxed 
values. The compliances without subscript, as in the 
previous equations, will indicate relaxed compliances. 
Furthermore, 

[ 5j(1) -5J(2)-- "2 I + + (0227~, j J ( ( 0 )  = LJu --I- 1 q-- (0227(1)2 1 

_ i [ 5 j o  ) (027(1) ~j(2> (027(2) ] 
1 + (0227(1)2 + 1 -~ (02Z'~)2 

In addition, if Ftl = G2 = 0 then 

curve. In addition, since for 

~2y( l )  Sll  
8((0q50.)2 - -  0 :::> (0270" = (Sll s12) x/3 (Sl l  2<5 

-- ~- (Sll-.St2)) 

(34) 

the modulus curve shows an inflection point at (0to = 
1/+,f3, slightly displaced with respect to the classical 
value for Young's and shear moduli, as shown in 
Fig. 2. 

From another point of view, according to the 
theories of elasticity and for cubic symmetry [7] 

S~2 SIR + (SI1 - -  S12 - -  1 S 4 4 ) F 1 2  

S~l Sll - -  2(Sil  - -  S12 - -  1S44)Fl l  

(35) 
and on using the same procedure as in the case of 
errors theory for 6v~2 ~ vi2 it can be shown that 

6V'12 

YI2 

_ 3((Su+2,12) - -  C](~u-~a~)) -I- (~(~u-'12) - -  ~44/2 )F l2  

S12 + (SII - -  S 1 2  - -  s44/2)F12 

1((~(Sll÷2S12)-~" 26(s,i s 1 2 ) ) -  (2d(st...._!_s,2__) ~ -  <~(s44))rll  ] 

- -  S1 i 2 2-'(S'771 ~ 5,12 - -  s 4 4 / 2 ) r 1 ,  J 
(36) 

SI 1 _[_ [Sll __ 2 ](0.02,/52 " Z(5 3-15(sll sl2)1 %11-s12) - -  l( '027a(sll-s12 ) 3 (Sll s12) 
e~ = 1 + 2 2 el 

(2) 270-(Sl i _s12 ) 

1 ] (O2,172 " 1_ 8 
S12 -[- [S12 ~- 3(~(SlI--S12)] a(Slt-Sl2 ; + l(027%t I s12)3 (SII S12) ~; = 

1 + c02272 
O'(Sl i s12) 

and Poisson's ratio is given by 

V12 = y(l) __ iv(2) __ 8~/8 j  

with 

y(l) = 
- - S I I S 1 2  -1- (S12 Jr- - -  +,2,)(+1+ 3 

(29) 

S~1 --'}- (SII a a  (zI2.L -2 - 3 (Sll sl2) )2 O-(Sll-Sl2 ) 

o-; 
(28) 

(30) 

and 

V(2) =_ 
0)27o- (~(Sll s12)(SII  -{- 2S12 ) (sll -s[2) 

2 "~2 (02 27.(2 
$21 + (Sl] - -  ~(~(Sil S12 ) ] O+(Sll--Vl2 , 

Moreover, it is easy to see that if 

(31) 

"~  0 y(l) ,~ S12" V (2) = 0 
(+027a(s i i s12 ) Sll  

S12 -}- (~(Sll si2)/3. 
(J)27O.(sll sl2) --~ O0 ~(l) ~ __ 

SI1 - -  3 ( II 12) 

(32a) 

¢2) = 0 

(32b) 

The relaxation curves described by Equations 30 and 
31 are similar to those of Young's and shear moduli, 
in isotropic materials. In fact 

•v (2) s I ] 

[~((J'J27G) - -  0 =::> (J)ZGSlI-SI2 = SII - -  Z63 ($11--$12) (33) 

and ¢2) has a maximum at (0r~ -~ 1, as for a Debye 

If F12 = F~I = 0 and 6(Sll+2S12)= 0, Equation 36 
reduces to 

_ 6(,,~ s ,2)(1  + 2 S12 5v12 (37) 
3S11 \ Sll  ,] 

Moreover, if 6(,,_~2) ~ (s~ - st2), Equation (32b) 
leads to 

y(l) ~ 5'12 6(Sll-Xl2) (1 + 2 s12) (38) 12 
Sll  3su \ " s~  / 

and 

2s12 ) 5Y12 ~ 5(Sll--S12) 1 + (39) 
3s11 sll  

which coincides with Equation 37. 

2.2. Cubic symmetry. Shear stress 
If a shear stress a;3 is applied to a cubic cell, a 
procedure similar to the one used for the previous case 

96 



leads to 

' ; (S l l  - -  S12 ) -{- [ (S l l  - -  S12 ) - -  15(Sll_S12) ] (02"L'0.~11 s,2 - -  i ~ ( S l l _ S t 2 ) O J " C ~ ( s l l  s12 ) 
2[ '23 '~23 2 2 

(1 + (0 %~1,-,~) 

$44 -t- ($44 - -  5 s44 ) (02 ' r 2  --  i0)'C%44(~$44 ) ffs44 f 
2 2 ; 0.23 + 1(I - 2F23) (1 + co %,44 ) 

For  a specimen with cylindrical symmetry,  an integra- 
tion over ~ between 0 and 27z should be performed [8]. 

! 
Then, if 0.23 = 20.4 

(S l l  - -  SI2 ) -Jr- [ (SIs  - -  S12 ) - -  6(sl l  s12)] ( '02T0.~l l -S ,2  
/;4 = 4F33  

(40) 

- -  i(j)Z2aSll_Sl2f~(Sll_Sl2) 

+ (1 - 2F33 ) 

(1 -Jl- (-L)2"~ 2 st2) ) a(Stl - 

5'44 + ($44 - -  5s44)(02"[  .2 __ icoz%46s~4" } °'s44 / 
..-7_-7- ~ 0.4 (1 + (0 % )  

(41) 

In the part icular  case where coz~ ~ 0 

/;; = [4($11 - -  S12)C33 -~- (1 - -  2 F 3 3 ) $ 4 4  ] 0.; ( 4 2 )  

and if 0)% ~ oo 

/;; = {4[(s,l - s,2) - 6 ( S l l _ S 1 2 ) ] r 3 3  

+ (I - 2F33)(s44 - 6,4~) } a4 (43) 

Moreover ,  shear modulus  is given by 

G 1 = __e4 (44) 
0.; 

and 

6G -1 = G-I  _ G -1 
cor~ ~ ~3 O)T a ~ 0 

= 4 F 3 3 ~ ( s u _ s 1 2 )  -'F (1 - -  2F33)Os44 ( 4 5 )  

which is the expression commonly  reported in the 
literature [1]. 

2.3. H e x a g o n a l  s ymmet r y .  L o n g i t u d i n a l  stress 
The t reatment  of  hexagonal  crystals under  longi- 
tudinal sinusoidal stresses can be carried on in a 
similar way, starting from Tables I and II. The elastic 
relations are 

(0.1 - [ -  0.2) l 
~/2 (/3' + /32) = ~/2 s130.3 + (s,, + s,2 ) 

/33 = s330.3 + s13(oq + G2) 

/3t - -  /;2 "~- (Sll  - -  812)(0.1 - -  0.2) 

/;4 "~- $44 0.4 

/35 ~ $440. 5 

/;6 ~- 2(S11 - -  S12)0.6 

If the stress is applied along X~ (see Fig. 3) the anelas- 
tic relationships associated with Equat ion 46 are given 
by 

1 
x/2 ( e l  + /;2) 

= [x/2s,3a~2+ (a~32-{-a~32)(Sllq-s12)] ' 
x/ 2 0.3 

(47a) 

,/2 

(46) 

/;4 -~ "Cas44/;4 

8 5 -l- ra~4495 -~- 

e3 = [a/32s33 + (a~ 2 + a+2)s,3] a'3 (47b) 

(/31 - -  g2) -t- ga(sll_Sl2)(~ I - -  i 2 )  

= (s,~ -- s12)(a~32 -- a~ 2) a; 

Jr- [ (S | I  - -  SI2 ) - -  ~(s i1_s12)  ] ~ f f ( s l l _ S l 2 ) ( a ~ 3 2  - -  a2132 ) 0-3 

(47c) 

+ + / 
a23a33s440.3 q- ($44 (~s44) + + "' - -  q~O-s44 a23 a33 0" 3 

(47d) 

+ + * 
a13a33s440. 3 " F  ($44 ~s44) + + " /  - -  ~" O's44 al 3 a33 0.3 

(47e) 

/36 ( s l l  s l 2 )  + + ' __ __ = _ a13 a23 0. 3 2 + r%, s12) 2 

+ + . t  
+ [(SII  - -  S | 2  ) - -  ~(Sll s12)] "Co a13a230. 3 (Sll -sI21 

(47f) 

There are no derivative terms in Equat ion  47a and 47b 
due to the fact that  only Type  I strains are involved. 
Fur thermore ,  on taking into account  these equations 
and after an arduous  but  simple t reatment  it can be 

X3 

x~ j3 

Figure 3 H e x a g o n a l  cell a n d  Eu le r ' s  angles .  
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shown that 

81 = a~ls i i  -[- a~2si2 jr_ a~3s13 ) -1- a31Sll -{- a~2s12 Jr- a~3s13 ) 

1 }/, 2 c5(~ H .~.,,) co~-r~-%. , ~ : ,  ~o-G~.,..,.,2~) - 

~e = {(a~ts,2 + a32sll + a~3s,,) -}- [(  a~ |S '2  -~ a32s11 -}- a~3s,3) + (a~l +2 a}e ) 

iu~(a~ I -- a~2 ) ~($11 1',2)~70",11 '12 t 

2 0  + 0"~2 ~20"111 19 ) 

× (0:r2%. }/"(1 + (022 
1 "Vl2) ~'°'('111 ~13 ) ] 

= ~ a~3)s13] g3 [a'~3S33 + (1 -- ~ a~ 

84 = IS44~-(S44--~s44)(02T%44--i(0Tas44(~s4411 -~- (02,[.2 a33 a32 0-3' 

¢Y.v44 

~5 ~ IS44 ~- (S44 -- (~s44) (02"fa'44 -- -I- (02~.2 a33a31°3' 
as44 

!SII SI2) -}- (S,I - -  S,2 - -  (5(sll_s,2)) (.02"[72 __ °'sl I -s12 
G6 = 1 -}- (02,.g2 

O-(Sl i Sl2) 

i (0 (a~ l  -- a_a~2! 0(sll SI2)~'O-(SlI--,'I2 ) 0-; 
q- -2(-1 -~- (02 "C2¢su_q2 ) I 

~(Sll S12) I 

i(0za (~,s 1 (q l -q2)  ~ II s 1 2 )  2 a 3 1 a 3 2 0 - ;  

(48) 

On combining these equations with Equat ion 22 leads 
to 

e'~ = {[Sl + (Sl - &i)(02~ 2 a(ql ' q 2 ) -  ioTa(~l, s12 )~SI]/  

(1 + (o2r 2 ~.2/) _ 2 2 a13a33 O-(Sl I 

$44 -1- ($44 - -  Os44)O2q72 - -  i(0r~, as44} ors44 * 
× 2 2 0-3 

(1 "~ (J) ~0-s44) 

(49) 

83 ~-- Sil I 

where 

-]- (Sll I - -  tSSlll)(,02"( 2 °(sl 1 -s12) 

__ i(0..Ca(Sll q2)15S111]/( 1 _[_ (02T2O.(Sll -s12) ) 

+ a2s(1 - a23) 

$44 + ($44 - -  6s44)f.O2"L "2 - -  i(0G,44c5,44 } ffs44 , 
X 2 2 0"3 

(1 + o r%4 ) 

S I ~- a~3a~3sll -~- (a l ia32 - -  a12a31)2s12 
2 2 

+ [a~3(1 - a~3) + a~3(1 - a~3)] Sl3 + a~3a33s33 

•S 1 2 2 )2 a(SIl  - -  SI2) 
= al3a33 - (alia32 - al2a3i 2 

Sll I = ( l  - -  a~3)2S,l + 2a~3(1 - a23)s13 + a43s33 

I~SII l = (1 - -  a23)  2 ~(S l l  - -  S12) ( 5 0 )  
2 

In the particular case where {a} is the or thogonal  
matrix of  Euler 's angles, that is, 

cos ~ cos q5 - cos 0 sin ~ sin 4) 

{a} = - s i n  0 cos q5 - cos 0 cos qJ sin 4~ 

sin 0 sin ~b 

a n d O =  0 = 0, then 

and 

Moreover  

(52) 

(53) 

E 1 - ~3 - $33' ( ( 0%)  (54)  
0-; 

which is the anelastic generalization of  the known 
equation o f  elasticity [5]. Since 

S;3 ~-- sin40 SII "4- sin20 cos20 (2S13 q- $44 ) 

-Jr- COS40 $33 (55)  

on taking into account  Equat ions  52 and 53 leads to 

E 1 ~- $33 (56) 

and 

r 
• (l) ;, (2) '~1 S13 (57) 

V13 ~ v13 - -  tVl3 - -  
~3 $33 

which are invariant under a change o f  co%. These 
results will be considered in a for thcoming paper, 
where the concepts developed will be applied to actual 
experimental data. 

2 .4 .  H e x a g o n a l  s y m m e t r y .  S h e a r  s t r e s s  
It will be assumed that  0-23 is the shear stress applied on 
a cylindrical specimen. Then, as in the previous sec- 
tion, an integration over ~O is necessary to average 
correctly. Fur thermore ,  as in the previous paragraph,  
it will be assumed that  only single defects are present. 

cos ~ sin ~b + cos 0 cos @ sin 

- sin ~O sin q5 + cos 0 cos @ cos 

- s i n  0 cos ~b 

sin ~ sin 0 

cos ~ sin 0 

COS 0 

(51) 
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Under these conditions 

G-I 
I2" s~4 dO 

2n 
- {Sly + [S(v  (1 2 , , 2  6 __ __ a33 ) (Sll S~2)J 

X co2 "C2 
O-,Sll_Sl2 ) - -  /(oO'~O.(Sll S12' (1  - -  a~3)2}/ 

(1 + co2,~.2 a(Sll _s12)) 

+ 
(1 + a323) 2(1 ~ 2 _ _ a33)a33 

X [$44 -Jr- ($44 - -  (~s44)(.02,.(2O_s44 __ icor%4 6s44]/ 

(1 -{- co2T2~rs44) (58)  

where 

S{V = (1 - -  823) [(Sll - -  S12 ) 

+ 2a]3 (sll -- 2S13 q- $33)] (59) 

which is only a function of 0. 

2.5. Anelastic lost enerog 
The elastic energy is given by 

W = 1 (60) ~Ci jk l  Gij Gkl 

so that 

d W = C~jk~ ~ dG~ (61) 

and when the strain is a maximum, the total elastic 
energy accumulated in a quarter of a cycle is 

W = ~- c0k~ e~ G~ dt (62) 

The energy dissipated per cycle is given by 

= I r cijkl s,j dskt (63) A W 

Moreover, under a uniaxial stress 

s o. = ( s ~ -  i S ~ ) a o l e x p ( i c o t )  
(64) 

• ~ • R G/ co (s~t + zs~l) a01 exp (icot) 

where R and I denote the real and imaginary com- 
ponent, respectively. In terms of the stress tensor 

co c2~/o, n R 
W 4- J0 rrkl ekl dt = crkz ~ a0~ Skal (65) 

and 

(Tkl ~'kt dt  = (Tkl ~ O-01 Sk l l l  (66) 

When Equations 65 and 66 are full developed, the 

and 

A W  : 0"017~ [O'IISIIlll or- 0"22S~211 + 0"33S~311 

+ 2(0-12S11211 -I- (7"13S11311 -{- O'23S1311)] 
(68) 

Each term of these equations describes the lost and 
stored energy raised by a particular strain mode. In 
a two index notation, which does not mean tensorial 
character, Equations 67 and 68 can be written as 

W ~- WII -q- W12 -I- m13 -1- mll 4 -/- W15 -}- WI6 

(69) 

A W  = A W l l  -}- A W l  2 -}- AWl3  -}- AWl4  

+ zXW,5 + zXW~6 (70) 

Furthermore, the following quotients give the 
expressions for the internal friction due to each strain 
m o d e  

AW~, $I,1 
tan ~bl - 4 Wll  SlRI tan ~b 2 

a ~  s13 
tanq53 - 4W~3 - s~3 tanq~4 - 

AW,, s]5 
tanq~5 - 4W15 - -  s ~  tanq~6 - -  

awl2 s'12 
4W12 s~2 

AWII4 $14 
4W14 sR4 

AWl6 s116 

4W16 s~6 
(71) 

where the ~b i are the phase angles between the longi- 
tudinal stress and the corresponding strain. For 
e x a m p l e ,  (~)1 is the angle defined by Equation 8, in the 
more restricted unidimensional problem. 

Finally, the results given by Equation 28 will be 
considered, as an example. In fact 

2 6(s,~ -s~2) 
- ova(,,, ,,~/ 3 

t a n  ~1 = 2 6 (.02 "c 2 
Sll -}- (Sll - -  ~- (Sll s12)) O-(Sll s12) 

(72) 
6(S11 S[2) 

(~O"~O'(Sl I sl2) 3 
tan q52 = 

SI2 -[- S12 -~ ff(Sll_Sl2 ) 

and Equation 28 can be written in the alternative f o r m  

el = Is01l exp (-i~bl) exp (icot) 
(73) 

e2 = 1~02L exp (-iq~2) exp (icot) 

The corresponding modulus and phase diagram is 
shown in Fig. 4. It can be seen very easily that 

1)( 2 ) 
tan ((~2 - -  41 )  --  y(I) 

6(Sll sl 2 ) 
CO'C a - - ( S l l  q- 2Si2 ) 

(Sll s12) 3 

SII S12 ~- (SII  

(74) 

following expressions are obtained 

W -- (7Ol 7~ 4 [OIISIRIII -~- 0-22S2R211 -}- 0"33s3R311 

+ 2(a,2s~2H + ~;t3StR311 + 0"23sR311)1 

(67) 

is the phase lag between longitudinal and transversal 
strains. On using the same arguments as for Equations 
30 and 31, the derivative 

(v~/¢ ~) 
- 0 

~COT, a 
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S12*(812* ~/3) 0Y2ro 2~ 

! 
i 

S *(S -26/3) ¢ ]; 11 f~ 
' ~  \ '  

Figure 4 Phase diagram of longitudinal and transversal strains for 
the cubic symmetry. X~' coincident with X l . 

leads to 

(DT a 

and, if 

Sl1SI2 

(SI, 2(~(s3-sl2))(Sl2 Jf- (~(sl 7s12) ) 

y2 
Ozo --* 0 v(1--- 5 ~ 0 

V (2) 
~ 0  O)Z~ -+ ~ V(I~ 

(75) 

(76) 

This behaviour is shown qualitatively in Fig. 2 and 
some characteristic values, indicated from 1 to 6, are 
given in Table IlI. 

3. Discussion and conclusions 
The most interesting aspects of the theory developed 
are those concerning the energetic interpretations 
given in paragraph 2.5. In fact, experimental values 
are usually found in the literature, where the lost 
energy is appreciable in longitudinal vibrations, while 
the modulus does not show the expected variation. 
This behaviour can be attributed to the loss produced 
by other strains, than the one in the direction of 
the applied stress, which are not measured in these 
experiments. 

Due to the higher elastic anisotropy of Poisson's 
ratio in single crystals [9, 10], than both Young's 
and shear modulus, a similar behaviour should be 
expected for time-dependent events. This anisotropy is 
reflected in several equations presented in the paper, 
and the coupling between the two perpendicular 
strains on the anelastic behaviour of Poisson's ratio is 
evident. Therefore, a more substantial information 
can be obtained from measurements of Poisson's ratio 
than from those of Young's or shear moduli. 

The proposed model might give also an explanation 
of the wide scatter in experimental values of Poisson's 
ratio. In fact, even if Young's or shear modulus do not 
show appreciable relaxation, Poisson's ratio can be 
affected by frequency or temperature due to anelastic 
effects. 

A set of equations were given to calculate relaxation 
and lost energies as functions of direction. These can 
be used to interprete data in single crystals. Pole dia- 
grams and appropriate distribution functions should 
be used for polycrystals, for a correct average. 

T A B LE I I I  Characteristic values for the points indicated from 
I t o 6 i n F i g .  2 

Position Value 

SII 

SII 
2 2a(Sll -s12) 

su 3 

I SI 1 S12 
3 [sit 26(Stl st2)~[, 

i )t 
 )1112 

+ 

O(Sll -s12) 
s12 + - -  

3 
4 

2C~(Sll si2) 
SII 3 

5 26(q= a2)~// 2(sll + sl2) 
Sll ~" )tSl2 -- 

~(Sll--s12) (SII -I- 2Si2 ) 

Finally, the concepts developed will be applied to 
actual experimental data in forthcoming papers. 
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